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A mid-level problem in DataflowGeometry2D is finding the intersection of two lines. In this 
section, we describe one way that this problem can be solved.  In DataflowGeometry2D, lines 
are represented numerically via orientation o and location l (explained here). Therefore, to find 
the intersection of two lines, we must use their respective orientations (o1	and	o2) and locations 
(l1 and l2) to find their intersection point i, as shown in Figure 1a below.  
 

        
    Fig. 1a. Sketch of problem statement              Fig. 1b. High-level solution     
         illustrating given inputs        
 
The problem-solving methodology relies heavily on visual imagination and sketching. In that 
mode, one can visualize a parallelogram spanned by two vectors v1	and v2 drawn parallel to L1 
and L2 (Fig. 1b).  There a straighforward solution suggested by this parallelogram. 
 
The parallelogram so constructed implies that:  
     
     i	=	v1	+	v2	 
 
Can we solve independently for each of the vectors v1	and v2 and then add them together to 
get our final solution i?  Yes.  Furthermore, there is a natural symmetry to this problem in that 
the process of solving for v2 is identical to the process of solving for v1	after swapping 
variables.  This means that if we can solve for v1, then we can use the same process to find v2. 
 
To solve for v1, we need its direction and magnitude. By definition, v1	runs parallel to L1, so 
dir(v1) is the same as the run direction of L1. This direction is also the same direction as a 90° 
counterclockwise rotation applied to L1	orientation o1.  This  90° vector rotation may be 
computed using a previously-solved DataflowGeometry2D module.     

https://youtu.be/UbVjSkA18D0?si=SGWtxGlnH24sjQuY&t=2342
https://dataflowgeometry.org/wp-content/uploads/2024/06/2D-Vector-Line-Equation.pdf


We have solved for the direction of v1.  How can we obtain magnitude || v1 ||?  Figure 2 gives 
the strategy.  
 

                                      
 
        Fig. 2.  Right triangle that solves for || v1 ||  
 
Let’s refer to the angle between o2 and v1 as θ. Since orientation vector o2 by definition makes 
a right angle with L2, the triangle OP1P2 (where O is the origin) is a right triangle.  As a result:	

 
We finish solving v1	by combining its magnitude and direction (by scalar multiplication): 

             
and by the exact same reasoning, arrive at a symmetrical solution for v2:    
 

            
 
Note that in a case like this, dir(v2) points away from the intersection; however, whenever this 
happens in our solution, dir(v2)	⋅	o1 is negative and hence ||v2||	is negative, thus v2		comes out 
with the correct pointing direction.  



 
 
The above two expressions specify how to calculate v1 and v2 from the givens L1 = [o1  l1 ] and 
L2 = [o2  l2 ].  We translate these expressions into dataflows (Figure 3), merging them using 
vector addition ( i	=	v1	+	v2	)	to compute the final numerical result for the intersection point.  
 

 
Figure 3. Modular Dataflow implementing Bhattacharya's Symmetrical Computational Solution 
                  for the Intersection of any two Given Lines L1 & L2  
 
The last issue to tackle is degeneracy. Two lines will have a degenerate intersection if they are 
parallel.  How does this impact the calculations?  The || v1 || and || v2 || calculations blow up 
(division by 0, arising from the dot product of 2 orthogonal vectors).  Therefore, detecting this 
special case and reporting it adds a measure of robustness to the automated solution being 
created.  The previously-solved module parallel?(L1,L2) is patched in as the desired 
detector.  With degeneracy reporting, the modularized line intersection algorithm becomes 
fault-tolerant in any usage context.  This feature supports drama-free solution piggybacking 
over arbitrary levels.  A whole slew of more advanced problems that require intersecting two 
lines can now be undertaken, e.g., solving a circle's unknown center and radius given 3 points 
on the circle. 
 
We conclude with a few words about this solution. Since most students will be used to the 
algebraic representations of lines taught in Algebra I (standard, slope-intercept, or point-slope 
form), [ o  l  ] representation provides students a dash of novelty to a problem that they will no 
doubt have solved before, but this time with robust automation of their mathematical thinking.   
 
Additionally, the solution we demonstrate was derived using simple vector functions and 
trigonometry, but can also be derived with methods ranging from freshman algebra to college 
linear algebra; thus, many high school students can approach, enjoy, and learn from this 
problem, regardless of their age and mathematical background. 
 


